Constructive toposes with countable sums as models of constructive set theory
نویسندگان
چکیده
We define a constructive topos to be a locally cartesian closed pretopos. The terminology is supported by the fact that constructive toposes enjoy a relationship with constructive set theory similar to the relationship between elementary toposes and (impredicative) intuitionistic set theory. This paper elaborates upon one aspect of the relationship between constructive toposes and constructive set theory. We show that any constructive topos with countable coproducts provides a model of a standard constructive set theory, CZFExp (that is, the variant of Aczel’s Constructive Zermelo-Fraenkel set theory CZF obtained by weakening Subset Collection to the Exponentiation axiom). The model is constructed as a category of classes, using ideas derived from Joyal and Moerdijk’s programme of algebraic set theory. A curiosity is that our model always validates the axiom V = Vω1 (in an appropriate formulation). Hence the full Separation schema is always refuted.
منابع مشابه
Heyting-valued interpretations for Constructive Set Theory
The theory of locales [23] has a twofold interplay with intuitionistic mathematics: first of all, the internal logic of toposes and intuitionistic set theories provide suitable settings for the development of the theory of locales [24], and secondly, the notion of a locale determines two important forms of toposes and of interpretations for intuitionistic set theories, namely localic toposes [2...
متن کاملThe Relation Reflection Scheme
In this paper we introduce a new axiom scheme, the Relation Reflection Scheme (RRS), for constructive set theory. Constructive set theory is an extensional set theoretical setting for constructive mathematics. A formal system for constructive set theory was first introduced by Myhill in [8]. In [1, 2, 3] I introduced a formal system CZF that is closely related to Myhill’s formal system and gave...
متن کاملVariations on Realizability: Realizing the Propositional Axiom of Choice
Early investigators of realizability were interested in metamathematical questions. In keeping with the traditions of the time they concentrated on interpretations of one formal system in another. They considered an ad hoc collection of increasingly ingenious interpretations to establish consistency, independence and conservativity results. van Oosten’s contribution to the Workshop (see van Oos...
متن کاملArithmetic universes and classifying toposes
The paper uses structures in Con, the author’s 2-category of sketches for arithmetic universes (AUs), to provide constructive, base-independent results for Grothendieck toposes (bounded S-toposes) as generalized spaces. The main result is to show how an extension map U : T1 → T0 can be viewed as a bundle, transforming base points (models of T0 in any elementary topos S with nno) to fibres (gene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ann. Pure Appl. Logic
دوره 163 شماره
صفحات -
تاریخ انتشار 2012